In this post, I will address two standardization initiatives that try to define the future of communication services based on IMS, and more especially the support of
Multimedia Communication.
As you will see, I have a soft spot for one of them (OMA Converged IP Messaging) and a strong bias against the other (3GPP Multimedia Telephony).
3GPP Multimedia Telephony3GPP Multimedia Telephony (MMTel for short) has appeared in 3GPP release 7 and will evolve in the next releases. The initiative originates from ETSI TISPAN requirements for fixed networks.
The name always made me mad, but it is actually very telling about what MMTel is today.
The service is "multimedia" in the sense that it permits the combination and dynamic re-negotiation of different media components within an IMS session. Sample components include full duplex voice, real time video, text communication, file transfer (e.g. video clip, audio clip, pictures). Note that there is no explicit mention of applications, and the 3GPP requirements state that a "typical usage" is speech (voice) and speech combined with other media components.
On the other hand, this is a "telephony" service, which seems to anchor its definition to the well-known, decades-old, voice-centric, and circuit-switched implemented telephony service. Basically, you could infer that Multimedia Telephony is an incremental evolution of Voice Telephony with the addition of new media components.
This may lead to potential questions when specifying Multimedia Telephony:
- Is the service only related to person-to-person communication or can it apply to person-to-service interactions? I already showed
an example of how a multimedia SIP session can be used in a person-to-service relationship, and you will see below that CPM supports it.
- Are current classical telephony supplementary services applicable in a new world where a session can be established with a service, where SIP URIs will eventually replace telephone numbers, where the protocol and the core network permit to reach the user on a multiplicity of devices, where enablers like group management and presence can change the users' behaviors to communication (e.g. is the user available for voice communication now? What are the alternatives?) as well as the way network-based call handling services can be implemented (using presence to take an informed decision), where users can negotiate the content of a session when establishing it, and where services can easily redirect users to web pages to allow them to decide how a call should be handled?
These questions are not purely theoretical when you consider the current standardization state of MMTel: it solely consists of the specification of how classical telephony services like Original Identification Presentation, Call Forwarding Unconditional or Communication Waiting can be implemented in IMS. The requirements specification clearly states that the behavior of each service,
"as perceived by the user, should be consistent with the behavior perceived when using the equivalent services on PSTN/ISDN and CS Mobile networks." Isn't this crystal clear?
As such, at the moment MMTel looks like a vehicle to standardize voice-centric telephony services to be supported by a Telephony Application Server (TAS), which may eventually become a Multimedia Telephony Server when voice is not the only media component supported by a call.
The MMTel initiative can be associated to another 3GPP one called IMS Centralized Services (ICS) which aims at having an IMS-based TAS for both CS telephony and IMS telephony. The approach would eventually deprecate existing IN servers in legacy networks and see them replaced by a TAS. Put together, both initiatives draw the following potential roadmap:
1) A TAS for IMS voice telephony
2) A TAS for both CS and IMS based voice telephony
3) A TAS to support IMS-based Multimedia Telephony
Basically, a TAS at the center of the future telecommunications network.
I personally do not believe at all in this incremental approach to Multimedia Communication, as SIP and IMS will drastically change the way people communicate, leaving plain old telephony as a separate service whose usage will gradually decline as people will adopt a totally new way to communicate. A TAS should therefore be seen as an important box in an IMS network, but a box that will remain focused and essentially unchanged until its termination.
True Multimedia Communication is to be supported by something else, and this is...OMA CPM.
OMA Converged IP Messaging (CPM)OMA Converged IP Messaging is currently under specification within OMA (the Open Mobile Alliance). In my opinion, this is by far to date the most significant step towards an optimal exploitation of IMS capabilities that I described in the past.
The name of this enabler may be misleading, as it seems to imply that CPM is a pure messaging service, while it is not.
Actually, CPM can be defined as a composite specification addressing two concerns:
- Full IMS messaging (OMA SIMPLE IM), including page mode and session-based approaches, as well as transparent interworking with legacy mobile messaging services (SMS, MMS, OMA IMPS). This could certainly be extended to other messaging services like email or Jabber/XMPP in either future versions of the specification or in smart implementations.
- Multimedia communication as
I had the opportunity to describe it in the past.
Let's start with the messaging features.
Page mode messaging, which is based on the SIP method MESSAGE can be seen as the equivalent to SMS in the SIP/IMS world. A user can send a page mode short message to another user or a group of users. This message is either delivered instantly over the IMS core network or stored for deferred delivery if the recipient is not available.
Session-based messaging is based on a SIP session, with messages delivered through a protocol called MSRP. Session-based messaging essentially serves two requirements that cannot be fulfilled by page mode messaging: the support of chats, in which messages are exchanged between two or more parties within a dialog context; the possibility to send large volume files like music or video clips. In addition, session-based messaging has two important benefits: it minimizes SIP control traffic to session management, and utilizes a specific protocol for the messages itself, permitting to implement an appropriate support in the network; by reusing the concept of SIP session, it permits messaging to be one component among others in a multimedia session.
Interworking with legacy messaging services like SMS and MMS permits CPM to be interesting from the start, as it does not rely only on the initially limited IMS community to deliver its services.
The scope of multimedia communication supported by CPM is very broad.
CPM will support a wide range of discreet (e.g. messaging, files, applications) and continuous (e.g. full duplex voice, video) components. It supports the negotiation of initial components in a session, dynamic renegotiation of components in the session, and does not require any specific component to be part of the session (for instance, it is not mandatory to have a messaging component despite the name of the service). The session can be both person-to-person (2-party or multiparty) or person-to-service (and obviously person-to-person&service).
CPM supports a multi-device approach, making use of SIP convergence capabilities. It permits a user to share an identity between several devices and to use several identities per device. A user may have its CPM session shared between several of its devices on a media per media basis (e.g. video sharing on TV and voice on mobile). Session mobility between devices is also supported (e.g. ongoing session transferred from TV to mobile). The user can also define preferences on how CPM should address communication according to its devices (e.g. IMs should be sent only to mobile).
In summary, CPM supports both of the three axes I defined for an optimal exploitation of IMS capabilities:
multimedia communication and
user oriented convergence.
CPM supports conferencing through a variety of means supported by SIP and already used in services like PoC or IMS Messaging: sessions to ad-hoc groups (a user sends an INVITE to a group explicitly defined in the INVITE), to pre-defined groups (the INVITE is sent to a
PSI identifying a group whose definition is stored in the network), and by adding participants to a session on the fly.
Interworking with non-CPM communication means is not limited to messaging. It also includes interworking with non-IMS voice, such as circuit-switched voice. This will be done by reusing current IMS/CS interworking components.
In addition, CPM supports a converged address book, converged in the sense that it is aimed at being shared by all the devices owned by the user. It also has an archiving functionality, able to store such things as messages, media objects and session histories. It interacts with presence in order to publish or access presence information for a user. CPM will also support web services towards application willing to use its services. An interesting feature is the possibility for users not to divulge their identity when using CPM, by using a nickname for instance.
The CPM architecture is quite straightforward:
- A CPM Client in the device supports CPM from a user perspective.
- A Converged Address Book component supports the address book for multiple devices.
- A Message and Media Storage component archives everything that needs to be archived.
- An Interworking Function supports interworking with non-CPM messaging solutions (voice interworking is supported through the IMS core network).
- A CPM User Prefs component interfaces with the user for CPM customization.
- The CPM Conversation Server supports multimedia sessions, and should in implementations look very similar to what I described
here. Like PoC and IMS Messaging, it will be subdivided in a Participating Function dedicated to a specific user in the session (called
Personal Multimedia Controller in
my post on the subject) and a Controlling Function component supporting features shared by multiple users like conferencing (I called it
Multimedia Focus in
the same post). These SIP centric components will control media intermediaries for individual components in the multimedia session (I called them
Media Mixers). Note that the specification does not mandate network intermediaries for every component, as it allows peer-to-peer media flows between devices when the operator's policies permit it.
Building block standardization approachesBoth specifications can claim (and actually do)
a building block approach to standardization. However, there are significant differences between them.
CPM's approach is IMS-centric, as it intends to reuse IMS enablers like the interworking with the circuit-switched network for voice, presence, group management and to make generic and extend architecture patterns that were introduced with the specification of Push To Talk over Cellular and later reused for IMS Messaging (OMA SIMPLE IM).
On the other hand, Multimedia Telephony's approach is pre-IMS centric. The goal is to create within IMS building blocks which mimic pre-IMS voice-centric telephony, with the hope (illusion?) that a multimedia communication experience can be created through the reuse of these basic building blocks that totally ignore the capabilities of IMS.
The reader can make its own opinion on the advantages and drawbacks of both approaches.
For my part, if I was an operator, I would be very suspicious about suppliers coming with a story of a Multimedia Telephony server defined as an extension of a short-term Telephony Application Server, and would ask them about the positioning of this product with regards to CPM.
On the other hand, I would mandate from the potential suppliers of IMS Messaging products to provide a CPM-ready solution with a clear roadmap. Considering that IMS Messaging is a brand new IMS specification, it may be a big mistake to purchase in 2008 or 2009 a solution that has no clear path towards the next big thing: CPM.
Links to publicly available specifications:
OMA CPM: nothing as this is work in progress
Multimedia Telephony Requirements:
TS 22.173Multimedia Telephony Architecture: section 4.16 in
TS 23.228 (the AS for Multimedia Telephony is unambiguously called TAS)
Multimedia Telephony Protocol Details:
TS 24.173Architecture for IMS Centralized Services:
TS 23.292Christophe